Nuclear Structure Experiments
RI beams@ ISAC/ARIEL

Rituparna Kanungo

Affiliate Scientist, TRIUMF
Professor, Saint Mary’s University

International Peer Review,
November 13-15, 2018
Exploring Terra Incognita

- Discovering new features of nuclei at extremes of neutron/proton ratio
 - Understanding neutron-rich matter in the Universe
 - Understanding nuclear force and guidance for models
- Understanding r-process with structure of neutron-rich nuclei
Exploring Terra Incognita

- Discovering new features of nuclei at extremes of neutron/proton ratio
 - Understanding neutron-rich matter in the Universe
 - Understanding nuclear force and guidance for models
- Understanding r-process with structure of neutron-rich nuclei

Stable nuclei

Nuclear Halo

- Changing face of the nucleus
- (N/Z>>1) Pure neutron surface
- rp-process in x-ray bursts
- Rare Isotopes (RI)
- Stable Isotopes

Number Z of protons

Number N of neutrons

Neutron star
Exploring Terra Incognita

- Discovering new features of nuclei at extremes of neutron/proton ratio
 - Understanding neutron-rich matter in the Universe
 - Understanding nuclear force and guidance for models
- Understanding r-process with structure of neutron-rich nuclei

Nuclear Halo

- Changes of nuclear shells
- Pure neutron surface
- Stable nuclei
- Changes of nuclear shells
- Pure neutron surface
- Stable nuclei

DTIUMF

ISAC / ARIEL

Number of neutrons

Nuclear Halo

(N/Z $>>$ 1)

Stable nuclei

Changing face of the nucleus

 neutron star

rp-process in x-ray bursts

Rare Isotopes (RI)

Stable Isotopes

Number Z of protons

Nuclear Halo

Changes of nuclear shells

(N/Z $>>$ 1)

Pure neutron surface

neutron star

Understanding neutron-rich matter in the Universe
Understanding nuclear force and guidance for models
Understanding r-process with structure of neutron-rich nuclei
Exploring Terra Incognita

- Discovering new features of nuclei at extremes of neutron/proton ratio

 - Understanding neutron-rich matter in the Universe
 - Understanding nuclear force and guidance for models

- Understanding r-process with structure of neutron-rich nuclei

- Changes of nuclear shells

- Nuclear Halo

- Stable nuclei

- Rare Isotopes (RI)

- Stable Isotopes

- Shape Coexistence

- Pure neutron surface

- Changing face of the nucleus
• Discovering new features of nuclei at extremes of neutron/proton ratio

 Understanding neutron-rich matter in the Universe
 Understanding nuclear force and guidance for models

• Understanding r-process with structure of neutron-rich nuclei
Stopped RI beam experiments

TITAN
Precision mass measurements

Collinear Laser Spectroscopy

GRIFFIN
Precision, high-efficiency β decay spectroscopy

Talk by J.D. Holt
$^{130}_{48}\text{Cd}$

Half Life: r-process
Half-Lives of Neutron-Rich $^{128-130}$Cd

$T_{1/2}$ influences timescale of r-process

M. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)
G. Lorusso et al. PRL 114 192501 (2015)

Nuclei near $N = 82$ are responsible for the $A \sim 130$ r-process abundance peak. These ‘waiting point’ nuclei are important in calculations of all astrophysical environments.
Half-Lives of Neutron-Rich $^{128-130}$Cd

$T_{1/2}$ influences timescale of r-process

Nuclei near $N = 82$ are responsible for the $A \sim 130$ r-process abundance peak. These ‘waiting point’ nuclei are important in calculations of all astrophysical environments.

M. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)
G. Lorusso et al. PRL 114 192501 (2015)

Sensitivity of the r-process β decay rates

130Cd beam

GRiffin : R. Dunlop et al., PRC 93, 062801(R) (2016).

Science Impact of TRIUMF data :
Resolves the discrepancy in half-life of 130Cd ($N = 82$). Creates new challenge for the calculated half-life of 131In.
Half-Lives of Neutron-Rich $^{128-130}$Cd

$T_{1/2}$ influences timescale of r-process

Nuclei near $N = 82$ are responsible for the $A \sim 130$ r-process abundance peak. These ‘waiting point’ nuclei are important in calculations of all astrophysical environments.

M. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)
G. Lorusso et al. PRL 114 192501 (2015)

130Cd beam

High precision $T_{1/2}$ measurements of neutron-rich nuclei needed to constrain nuclear models for r-process

Sensitivity of the r-process β decay rates

Science Impact of TRIUMF data:
Resolves the discrepancy in half-life of 130Cd ($N = 82$).
Creates new challenge for the calculated half-life of 131In.
Laser spectroscopy of neutron-rich Rb isotopes probe details of the shape transition at $N=60$.

Two states observed (spin = 0 and spin =3)

Laser spectroscopy of neutron-rich Rb isotopes probe details of the shape transition at $N=60$.

Two states observed (spin $= 0$ and spin $=3$)

Charge Radii lie on same deformation line as $N = 60$, shows prolate deformation for BOTH states in 98Rb
Charge radius of 98Rb isomeric states

Laser spectroscopy of neutron-rich Rb isotopes probe details of the shape transition at $N=60$.

Two states observed (spin = 0 and spin =3)

98Rb

Spin = 0 \(\text{(unknown level)}\) Spin = 3 \(\text{Spin = 3}\)

Relative Frequency (MHz)

Isotope Shift

\[\nu = \text{frequency of hyperfine structure} \]

Charge Radii lie on same deformation line as $N = 60$, shows prolate deformation for BOTH states in 98Rb

Unexpected feature and not yet explained by theory
Re-accelerated RI beam experiments

- E/A ~ 1.8 – 12 MeV
- High Quality
 (unique feature of TRIUMF re-accelerated beams)
- Emittance $0.3 \, \pi/\beta \, \text{mm mrad}$
- 1 $\, \pi \, \text{keV/u ns}$
Technical highlight: First high mass experiment at ISACII (95Sr beam)
Shape co-existence in 94,96Sr : Transfer reaction

Technical highlight : First high mass experiment at ISACII (95Sr beam)

Science highlight : • First observation of excited 0^+ states in 94Sr

S. Cruz, Ph.D. thesis (UBC, 2017)
S. Bhattacharjee, S. Cruz et al, in preparation
Shape co-existence in 94,96Sr: Transfer reaction

Technical highlight: First high mass experiment at ISACII (95Sr beam)

Science highlight:
- First observation of excited 0^+ states in 94Sr
- 96Sr$_{gs}$ found to have small spherical shape component
- 96Sr($0_2^+, 0_3^+$) states higher spherical component coexist with deformed component

Not explained yet by shell model

$|0^+_2\rangle = a|0_{sph}^+\rangle + \sqrt{1-a^2}|0_{def}^+\rangle$

S. Cruz, Ph.D. thesis (UBC, 2017)
S. Bhattacharjee, S. Cruz et al, in preparation
$^{11}_{3}\text{Li}$

Halo driven new excitation

Neutron Halo

Neutron Number

Proton Number
Search for Soft Dipole Resonance in 11Li halo

Science highlight: Isoscalar soft dipole state observed \Rightarrow strong correlation of surface neutrons

R. Kanungo, A. Sanetullaev, J. Tanaka et al.
Search for Soft Dipole Resonance in ^{11}Li halo

Science highlight: Isoscalar soft dipole state observed \Rightarrow strong correlation of surface neutrons

R. Kanungo, A. Sanetullaev, J. Tanaka et al.
Search for Soft Dipole Resonance in 11Li halo

Science highlight: Isoscalar soft dipole state observed \Rightarrow strong correlation of surface neutrons

Confirmed evidence seen @ TRIUMF after two decades since first postulated

R. Kanungo, A. Sanetullaev, J. Tanaka et al.

11Li signature beam of TRIUMF

11Li target

Solid D_2 target

Dipole

Soft Dipole Resonance

Giant Dipole Resonance

\[E/A = 5 \text{ MeV} \]
Search for Soft Dipole Resonance in 11Li halo

Science highlight: Isoscalar soft dipole state observed => strong correlation of surface neutrons

Confirmed evidence seen @ TRIUMF after two decades since first postulated

R. Kanungo, A. Sanetullaev, J. Tanaka et al.

Soft dipole resonances can enhance neutron capture rates (r-process). ARIEL will help explore them in heavier nuclei.
New: Electromagnetic Mass Analyzer (EMMA)

• Detection of heavy recoil nuclei in reactions
• Separation of beam from reaction recoils

Mass/Charge Spectrum from 84 MeV 23Na on natCu
Beam suppression $>10^{12}$

Four approved experiments:
• Isospin symmetry for states in 21Ne and 21Na
• Capture cross sections for s- and p-processes
• (p,α) reaction cross section for hot CNO cycle breakout

Program to start in Spring 2019 following installation of TIGRESS around EMMA target
Future Perspectives @ ARIEL

Enable a multitude of high-impact nuclear structure measurements at TRIUMF

• What are the characteristics of nuclei at N/Z >> 1?
 Changes in nuclear shell structure and evolution of shape coexistence (masses, transfer reactions, transition rates, charge radii)
 New signatures in pairing correlation (two-nucleon transfer reactions)
 New excitation modes (soft dipole) (inelastic scattering)

• What is the universal prescription of the nuclear force and nuclear model?
 Constraining ab initio theory (elastic scattering, inelastic scattering, excited states, masses, magnetic and quadrupole moments)

• Nuclear structure for understanding the origin of heavy elements in nature
 Constraining neutron capture cross sections for r-process (transfer reactions)
 Constraining nuclear models from precise measurements of masses and beta decay rates (masses, half-lives)

CANREB – ARIEL will enable experiments with high-mass re-accelerated beams
Acknowledgements

Thank you for your attention
Backup Slides
Search for Soft Dipole Resonance in ^{11}Li halo

$^{11}\text{Li}(p,p')$

- Shell model (SFO-tls): tensor in p-sd shell part explaining the $\pi+\rho$ meson exchange potential
- Coupled Cluster: with chiral NN force. Need to include effect of continuum.
- Three-body models: Resonances very closely spaced.
Soft Dipole Resonance and neutron capture rate

S. Goriely, PLB, ’98
Half-Lives of Neutron-Rich $^{128-130}$Cd

Sensitivity of the r-process β decay rates

Nuclei near $N = 82$ are responsible for the $A \sim 130$ r-process abundance peak. These ‘waiting point’ nuclei are important in calculations of all astrophysical environments.

50 132Sn
49 131In
48 130Cd
47 129Ag
46 128Pd
45 127Rh
N=82

G. Lorusso et al. PRL 114 192501 (2015)
M. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)